Dynamic Temporal Planning for Multirobot Systems

نویسندگان

  • Ugur C. Usug
  • Sanem Sariel
چکیده

The use of automated action planning techniques is essential for efficient mission execution of mobile robots. However, a tremendous effort is needed to represent planning problem domains realistically to meet the real-world constraints. Therefore, there is another source of uncertainty for mobile robot systems due to the impossibility of perfectly representing action representations (e.g., preconditions and effects) in all circumstances. When domain representations are not complete, a planner may not be capable of constructing a valid plan for dynamic events even when it is possible. This research focuses on a generic domain update method to construct alternative plans against real-time execution failures which are detected either during runtime or earlier by a plan simulation process. Based on the updated domain representations, a new executable plan is constructed even when the outcomes of existing operators are not completely known in advance or valid plans are not possible with the existing representation of the domain. A failure resolution scenario is given in the realistic Webots simulator with mobile robots. Since TLPlan is used as the base temporal planner, makespan optimization is achieved with the available knowledge of the robots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multirobot Symbolic Planning under Temporal Uncertainty

Multirobot symbolic planning (MSP) aims at computing plans, each in the form of a sequence of actions, for a team of robots to achieve their individual goals while minimizing overall cost. Solving MSP problems requires modeling limited domain resources (e.g., corridors that allow at most one robot at a time) and the possibility of action synergy (e.g., multiple robots going through a door after...

متن کامل

Subdimensional Expansion: A Framework for Computationally Tractable Multirobot Path Planning

Planning optimal paths for large numbers of robots is computationally expensive. In this thesis, we present a new framework for multirobot path planning called subdimensional expansion, which initially plans for each robot individually, and then coordinates motion among the robots as needed. More specifically, subdimensional expansion initially creates a one-dimensional search space embedded in...

متن کامل

Incremental Reconstruction of Generalized Voronoi Diagrams on Grids

We present an incremental algorithm for constructing and reconstructing Generalized Voronoi Diagrams (GVDs) on grids. Our algorithm, Dynamic Brushfire, uses techniques from the path planning community to efficiently update GVDs when the underlying environment changes or when new information concerning the environment is received. Dynamic Brushfire is an order of magnitude more efficient than cu...

متن کامل

Application of Mobile Code to Development of Cooperative Multirobot Systems

Multirobot systems address an increasing number of different applications. However, a general assessed methodology for designing and developing the cooperation structure of these systems is still lacking. In this paper we present one of such methodologies, called dynamic agency, which is strongly based on a novel distributed production system, called DCLIPS, that acts an infrastructure for infe...

متن کامل

Sold!: auction methods for multirobot coordination

The key to utilizing the potential of multirobot systems is cooperation. How can we achieve cooperation in systems composed of failure-prone autonomous robots operating in noisy, dynamic environments? In this paper, we present a novel method of dynamic task allocation for groups of such robots. We implemented and tested an auction-based task allocation system which we call MURDOCH, built upon a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011